Play Open
Loading Please wait Loading Please wait Loading Please wait Loading Please wait Loading Please wait Loading Please wait

ARM架构版本及处理器系列详细介绍

目录

1 ARM发展

2 ARM版本

3ARM系列说明

3.1ARM7系列

3.2ARM9系列

3.3ARM11系列

3.4Cortex-R系列

3.5Cortex-M系列

3.6Cortex-A系列

4ARM 内核时间表

5ARM第三方设计公司

1 ARM发展

ARM是Advanced RISC Machine的缩写,即进阶精简指令集机器。arm更早称为Acorn RISC Machine,是一个32位精简指令集(RISC)处理器架构。也有基于ARM设计的派生产品,主要产品包括Marvell的XScale架构和和德州仪器的OMAP系列。ARM家族中32位嵌入式处理器占比达75%,由于ARM的低功耗特性,被广泛反应于移动通信领域、便携式设备等领域。

1983年Acorn电脑公司(Acorn Computers Ltd)开始开发一颗主要用于路由器的Conexant ARM处理器,由Roger Wilson和Steve Furber带领团队,着手开发一种新架构,类似进阶的MOS Technology 6502处理器。Acorn有一大堆建构在6502架构上的电脑。该团队在1985年时开发出ARM1 Sample版,并于次年量产了ARM2,ARM2具有32位的数据总线、26位的寻址空间,并提供64 Mbyte的寻址范围与16个32-bit的暂存器。

在1980年代晚期,苹果电脑开始与Acorn合作开发新版的ARM核心。1990年将设计团队另组成一间名为安谋国际科技(Advanced RISC Machines Ltd.)的新公司,。1991年首版ARM6出样,然后苹果电脑使用ARM6架构的ARM 610来当作他们Apple Newton PDA的基础。在1994年,Acorn使用ARM 610做为他们Risc PC电脑内的CPU。

ARM是一家微处理器行业的知名企业,该企业设计了大量高性能、廉价、耗能低的RISC (精简指令集)处理器,它只设计芯片而不生产。ARM的经营模式在于出售其知识产权核(IP core),将技术授权给世界上许多著名的半导体、软件和OEM厂商,并提供技术服务。

ARM的版本分为两类,一个是内核版本,一个处理器版本。内核版本也就是ARM架构,如ARMv1、ARMv2、ARMv3、ARMv4、ARMv5、ARMv6、ARMv7、ARMv8等。处理器版本也就是ARM处理器,如ARM1、ARM9、ARM11、ARM Cortex-A(A7、A9、A15),ARM Cortex-M(M1、M3、M4)、ARM Cortex-R,这个也是我们通常意义上所指的ARM版本。

2 ARM版本

ARM版本信息简化表如下表所示。

内核(架构)版本

处理器版本

ARMv1

ARM1

ARMv2

ARM2、ARM3

ARMv3

ARM6、ARM7

ARMv4

StrongARM、ARM7TDMI、ARM9TDMI

ARMv5

ARM7EJ、ARM9E、ARM10E、XScale

ARMv6

ARM11、ARM Cortex-M

ARMv7

ARM Cortex-A、ARM Cortex-M、ARM Cortex-R

ARMv8

ARM Cortex-A30、ARM Cortex-A50、ARM Cortex-A70

ARM版本信息详细表如下表所示。(参考https://en.wikipedia.org/wiki/List_of_ARM_microarchitectures)

ARM familyARM architectureARM coreFeatureCache (I / D), MMUTypical MIPS @ MHzReferenceARM1ARMv1ARM1First implementationNone ARM2ARMv2ARM2ARMv2 added the MUL (multiply) instructionNone4 MIPS @ 8 MHz 0.33 DMIPS/MHz ARMv2aARM250Integrated MEMC (MMU), graphics and I/O processor. ARMv2a added the SWP and SWPB (swap) instructionsNone, MEMC1a7 MIPS @ 12 MHz ARM3ARMv2aARM3First integrated memory cache4 KB unified12 MIPS @ 25 MHz 0.50 DMIPS/MHz ARM6ARMv3ARM60ARMv3 first to support 32-bit memory address space (previously 26-bit). ARMv3M first added long multiply instructions (32x32=64).None10 MIPS @ 12 MHz ARM600As ARM60, cache and coprocessor bus (for FPA10 floating-point unit)4 KB unified28 MIPS @ 33 MHz ARM610As ARM60, cache, no coprocessor bus4 KB unified17 MIPS @ 20 MHz 0.65 DMIPS/MHz[4]ARM7ARMv3ARM700 8 KB unified40 MHz ARM710As ARM700, no coprocessor bus8 KB unified40 MHz[5]ARM710aAs ARM7108 KB unified40 MHz 0.68 DMIPS/MHz ARM7TARMv4TARM7TDMI(-S)3-stage pipeline, Thumb, ARMv4 first to drop legacy ARM 26-bit addressingNone15 MIPS @ 16.8 MHz 63 DMIPS @ 70 MHz ARM710TAs ARM7TDMI, cache8 KB unified, MMU36 MIPS @ 40 MHz ARM720TAs ARM7TDMI, cache8 KB unified, MMU with FCSE (Fast Context Switch Extension)60 MIPS @ 59.8 MHz ARM740TAs ARM7TDMI, cacheMPU ARM7EJARMv5TEJARM7EJ-S5-stage pipeline, Thumb, Jazelle DBX, enhanced DSP instructionsNone ARM8ARMv4ARM8105-stage pipeline, static branch prediction, double-bandwidth memory8 KB unified, MMU84 MIPS @ 72 MHz 1.16 DMIPS/MHz[6][7]ARM9TARMv4TARM9TDMI5-stage pipeline, ThumbNone ARM920TAs ARM9TDMI, cache16 KB / 16 KB, MMU with FCSE (Fast Context Switch Extension)200 MIPS @ 180 MHz[8]ARM922TAs ARM9TDMI, caches8 KB / 8 KB, MMU ARM940TAs ARM9TDMI, caches4 KB / 4 KB, MPU ARM9EARMv5TEARM946E-SThumb, enhanced DSP instructions, cachesVariable, tightly coupled memories, MPU ARM966E-SThumb, enhanced DSP instructionsNo cache, TCMs ARM968E-SAs ARM966E-SNo cache, TCMs ARMv5TEJARM926EJ-SThumb, Jazelle DBX, enhanced DSP instructionsVariable, TCMs, MMU220 MIPS @ 200 MHz ARMv5TEARM996HSClockless processor, as ARM966E-SNo caches, TCMs, MPU ARM10EARMv5TEARM1020E6-stage pipeline, Thumb, enhanced DSP instructions, (VFP)32 KB / 32 KB, MMU ARM1022EAs ARM1020E16 KB / 16 KB, MMU ARMv5TEJARM1026EJ-SThumb, Jazelle DBX, enhanced DSP instructions, (VFP)Variable, MMU or MPU ARM11ARMv6ARM1136J(F)-S8-stage pipeline, SIMD, Thumb, Jazelle DBX, (VFP), enhanced DSP instructions, unaligned memory accessVariable, MMU740 @ 532–665 MHz (i.MX31 SoC), 400–528 MHz[9]ARMv6T2ARM1156T2(F)-S9-stage pipeline, SIMD, Thumb-2, (VFP), enhanced DSP instructionsVariable, MPU [10]ARMv6ZARM1176JZ(F)-SAs ARM1136EJ(F)-SVariable, MMU + TrustZone965 DMIPS @ 772 MHz, up to 2,600 DMIPS with four processors[11]ARMv6KARM11MPCoreAs ARM1136EJ(F)-S, 1–4 core SMPVariable, MMU SecurCoreARMv6-MSC000 0.9 DMIPS/MHz ARMv4TSC100 ARMv7-MSC300 1.25 DMIPS/MHz Cortex-MARMv6-MCortex-M0[12]Microcontroller profile, most Thumb + some Thumb-2,[13] hardware multiply instruction (optional small), optional system timer, optional bit-banding memoryOptional cache, no TCM, no MPU0.84 DMIPS/MHz Cortex-M0+[14]Microcontroller profile, most Thumb + some Thumb-2,[13] hardware multiply instruction (optional small), optional system timer, optional bit-banding memoryOptional cache, no TCM, optional MPU with 8 regions0.93 DMIPS/MHz Cortex-M1[15]Microcontroller profile, most Thumb + some Thumb-2,[13] hardware multiply instruction (optional small), OS option adds SVC / banked stack pointer, optional system timer, no bit-banding memoryOptional cache, 0–1024 KB I-TCM, 0–1024 KB D-TCM, no MPU136 DMIPS @ 170 MHz,[16] (0.8 DMIPS/MHz FPGA-dependent)[17] ARMv7-MCortex-M3[18]Microcontroller profile, Thumb / Thumb-2, hardware multiply and divide instructions, optional bit-banding memoryOptional cache, no TCM, optional MPU with 8 regions1.25 DMIPS/MHz ARMv7E-MCortex-M4[19]Microcontroller profile, Thumb / Thumb-2 / DSP / optional VFPv4-SP single-precision FPU, hardware multiply and divide instructions, optional bit-banding memoryOptional cache, no TCM, optional MPU with 8 regions1.25 DMIPS/MHz (1.27 w/FPU) Cortex-M7[20]Microcontroller profile, Thumb / Thumb-2 / DSP / optional VFPv5 single and double precision FPU, hardware multiply and divide instructions0−64 KB I-cache, 0−64 KB D-cache, 0–16 MB I-TCM, 0–16 MB D-TCM (all these w/optional ECC), optional MPU with 8 or 16 regions2.14 DMIPS/MHz ARMv8-MCortex-M23[21]Microcontroller profile, Thumb-1 (most), Thumb-2 (some), Divide, TrustZoneOptional cache, no TCM, optional MPU with 16 regions0.99 DMIPS/MHz Cortex-M33[22]Microcontroller profile, Thumb-1, Thumb-2, Saturated, DSP, Divide, FPU (SP), TrustZone, Co-processorOptional cache, no TCM, optional MPU with 16 regions1.50 DMIPS/MHz Cortex-M35P[23]Microcontroller profile, Thumb-1, Thumb-2, Saturated, DSP, Divide, FPU (SP), TrustZone, Co-processorBuilt-in cache (with option 2–16 KB), I-cache, no TCM, optional MPU with 16 regions1.50 DMIPS/MHz Cortex-RARMv7-RCortex-R4[24]Real-time profile, Thumb / Thumb-2 / DSP / optional VFPv3 FPU, hardware multiply and optional divide instructions, optional parity & ECC for internal buses / cache / TCM, 8-stage pipeline dual-core running lockstep with fault logic0–64 KB / 0–64 KB, 0–2 of 0–8 MB TCM, opt. MPU with 8/12 regions1.67 DMIPS/MHz[25] Cortex-R5[26]Real-time profile, Thumb / Thumb-2 / DSP / optional VFPv3 FPU and precision, hardware multiply and optional divide instructions, optional parity & ECC for internal buses / cache / TCM, 8-stage pipeline dual-core running lock-step with fault logic / optional as 2 independent cores, low-latency peripheral port (LLPP), accelerator coherency port (ACP)[27]0–64 KB / 0–64 KB, 0–2 of 0–8 MB TCM, opt. MPU with 12/16 regions1.67 DMIPS/MHz[25] Cortex-R7[28]Real-time profile, Thumb / Thumb-2 / DSP / optional VFPv3 FPU and precision, hardware multiply and optional divide instructions, optional parity & ECC for internal buses / cache / TCM, 11-stage pipeline dual-core running lock-step with fault logic / out-of-order execution / dynamic register renaming / optional as 2 independent cores, low-latency peripheral port (LLPP), ACP[27]0–64 KB / 0–64 KB, ? of 0–128 KB TCM, opt. MPU with 16 regions2.50 DMIPS/MHz[25] Cortex-R8[29]TBDTBD2.50 DMIPS/MHz[25] ARMv8-RCortex-R52[30]TBDTBD2.16 DMIPS/MHz[31] Cortex-A (32-bit)ARMv7-ACortex-A5[32]Application profile, ARM / Thumb / Thumb-2 / DSP / SIMD / Optional VFPv4-D16 FPU / Optional NEON / Jazelle RCT and DBX, 1–4 cores / optional MPCore, snoop control unit (SCU), generic interrupt controller (GIC), accelerator coherence port (ACP)4−64 KB / 4−64 KB L1, MMU + TrustZone1.57 DMIPS/MHz per core Cortex-A7[33]Application profile, ARM / Thumb / Thumb-2 / DSP / VFPv4 FPU / NEON / Jazelle RCT and DBX / Hardware virtualization, in-order execution, superscalar, 1–4 SMP cores, MPCore, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), architecture and feature set are identical to A15, 8–10 stage pipeline, low-power design[34]8−64 KB / 8−64 KB L1, 0–1 MB L2, MMU + TrustZone1.9 DMIPS/MHz per core Cortex-A8[35]Application profile, ARM / Thumb / Thumb-2 / VFPv3 FPU / NEON / Jazelle RCT and DAC, 13-stage superscalar pipeline16–32 KB / 16–32 KB L1, 0–1 MB L2 opt. ECC, MMU + TrustZoneUp to 2000 (2.0 DMIPS/MHz in speed from 600 MHz to greater than 1 GHz) Cortex-A9[36]Application profile, ARM / Thumb / Thumb-2 / DSP / Optional VFPv3 FPU / Optional NEON / Jazelle RCT and DBX, out-of-order speculative issue superscalar, 1–4 SMP cores, MPCore, snoop control unit (SCU), generic interrupt controller (GIC), accelerator coherence port (ACP)16–64 KB / 16–64 KB L1, 0–8 MB L2 opt. parity, MMU + TrustZone2.5 DMIPS/MHz per core, 10,000 DMIPS @ 2 GHz on Performance Optimized TSMC 40G (dual-core) Cortex-A12[37]Application profile, ARM / Thumb-2 / DSP / VFPv4 FPU / NEON / Hardware virtualization, out-of-order speculative issue superscalar, 1–4 SMP cores, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), accelerator coherence port (ACP)32−64 KB3.0 DMIPS/MHz per core Cortex-A15[38]Application profile, ARM / Thumb / Thumb-2 / DSP / VFPv4 FPU / NEON / integer divide / fused MAC / Jazelle RCT / hardware virtualization, out-of-order speculative issue superscalar, 1–4 SMP cores, MPCore, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), ACP, 15-24 stage pipeline[34]32 KB w/parity / 32 KB w/ECC L1, 0–4 MB L2, L2 has ECC, MMU + TrustZoneAt least 3.5 DMIPS/MHz per core (up to 4.01 DMIPS/MHz depending on implementation)[39] Cortex-A17[40]Application profile, ARM / Thumb / Thumb-2 / DSP / VFPv4 FPU / NEON / integer divide / fused MAC / Jazelle RCT / hardware virtualization, out-of-order speculative issue superscalar, 1–4 SMP cores, MPCore, Large Physical Address Extensions (LPAE), snoop control unit (SCU), generic interrupt controller (GIC), ACP32 KB L1, 256 KB–8 MB L2 w/optional ECC2.8 DMIPS/MHz ARMv8-ACortex-A32[41]Application profile, AArch32, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, dual issue, in-order pipeline8–64 KB w/optional parity / 8−64 KB w/optional ECC L1 per core, 128 KB–1 MB L2 w/optional ECC shared Cortex-A (64-bit)ARMv8-AARM Cortex-A34[42]Application profile, AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 2-width decode, in-order pipeline8−64 KB w/parity / 8−64 KB w/ECC L1 per core, 128 KB–1 MB L2 shared, 40-bit physical addresses Cortex-A35[43]Application profile, AArch32 and AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 2-width decode, in-order pipeline8−64 KB w/parity / 8−64 KB w/ECC L1 per core, 128 KB–1 MB L2 shared, 40-bit physical addresses1.78 DMIPS/MHz Cortex-A53[44]Application profile, AArch32 and AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 2-width decode, in-order pipeline8−64 KB w/parity / 8−64 KB w/ECC L1 per core, 128 KB–2 MB L2 shared, 40-bit physical addresses2.3 DMIPS/MHz Cortex-A57[45]Application profile, AArch32 and AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 3-width decode superscalar, deeply out-of-order pipeline48 KB w/DED parity / 32 KB w/ECC L1 per core; 512 KB–2 MB L2 shared w/ECC; 44-bit physical addresses4.1–4.5 DMIPS/MHz[46][47] Cortex-A72[48]Application profile, AArch32 and AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 3-width superscalar, deeply out-of-order pipeline48 KB w/DED parity / 32 KB w/ECC L1 per core; 512 KB–2 MB L2 shared w/ECC; 44-bit physical addresses4.7 DMIPS/MHz Cortex-A73[49]Application profile, AArch32 and AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 2-width superscalar, deeply out-of-order pipeline64 KB / 32−64 KB L1 per core, 256 KB–8 MB L2 shared w/ optional ECC, 44-bit physical addresses4.8 DMIPS/MHz[50] ARMv8.2-ACortex-A55[51]Application profile, AArch32 and AArch64, 1–8 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 2-width decode, in-order pipeline[52]16−64 KB / 16−64 KB L1, 256 KB L2 per core, 4 MB L3 shared Arm Cortex-A65AE[53]Application profile, AArch64, 1–8 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 2-wide decode superscalar, 3-width issue, out-of-order pipeline, SMT64 / 64 KB L1, 256 KB L2 per core, 4 MB L3 shared Cortex-A75[54]Application profile, AArch32 and AArch64, 1–8 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 3-width decode superscalar, deeply out-of-order pipeline[55]64 / 64 KB L1, 512 KB L2 per core, 4 MB L3 shared Cortex-A76[56]Application profile, AArch32 (non-privileged level or EL0 only) and AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 4-width decode superscalar, 8-way issue, 13 stage pipeline, deeply out-of-order pipeline[57]64 / 64 KB L1, 256−512 KB L2 per core, 512 KB−4 MB L3 shared Cortex-A77[58]Application profile, AArch32 (non-privileged level or EL0 only) and AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 4-width decode superscalar, 6-width instruction fetch, 12-way issue, 13 stage pipeline, deeply out-of-order pipeline[57]1.5K L0 MOPs cache, 64 / 64 KB L1, 256−512 KB L2 per core, 512 KB−4 MB L3 shared NeoverseNeoverse N1[59]Application profile, AArch32 (non-privileged level or EL0 only) and AArch64, 1–4 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 4-width decode superscalar, 8-way dispatch/issue, 13 stage pipeline, deeply out-of-order pipeline[57]64 / 64 KB L1, 512−1024 KB L2 per core, 2−128 MB L3 shared, 128 MB system level cache Neoverse E1Application profile, AArch64, 1–8 SMP cores, TrustZone, NEON advanced SIMD, VFPv4, hardware virtualization, 2-wide decode superscalar, 3-width issue, 10 stage pipeline, out-of-order pipeline, SMT32−64 KB / 32−64 KB L1, 256 KB L2 per core, 4 MB L3 shared ARM familyARM architectureARM coreFeatureCache (I / D), MMUTypical MIPS @ MHzReference

3 ARM系列说明

3.1 ARM7系列

该系列主要针对某些简单的32位设备,作为目前较旧的一个系列,ARM7处理器已经不建议继续在新品中使用。主要包括ARM7TDMI-S(ARMv4T架构)和ARM7EJ-S(ARMv5TEJ架构)。

3.2 ARM9系列

主要针对嵌入式实时应用,主要包括ARM926EJ-S、ARM946E-S和 ARM968E-S。

3.3 ARM11系列

主要应用在高可靠性和实时嵌入式应用领域,主要包括ARM11MPCore、ARM1176、ARM1156、ARM1136。

3.4 Cortex-R系列

Cortex-R,代表实时的意义(Real-Time),目标是实时任务处理,主要应用领域包括汽车、相机、工业、医学等。

该系列处理器主要包括Cortex-R4、Cortex-R5、Cortex-R7、Cortex-R8、Cortex-R52、Cortex-A17。

3.5 Cortex-M系列

Cortex-M,代表微处理器的意义(Microcontrollers),目标是最节能的嵌入式设备,主要应用领域包括汽车、能源网、医学、嵌入式、智能卡、智能设备。传感器融合、穿戴设备等。

该系列处理器主要包括Cortex-M0、Cortex-M0+、Cortex-M3、Cortex-M4、Cortex-M7、Cortex-M23、Cortex-M33、Cortex-M35P。

3.6 Cortex-A系列

Cortex-A,代表的是先进意义(Advanced),目标是以最佳功耗实现最高性能,主要应用领域包括汽车、工业、医学、调制解调器、存储等。Cortex-A也是目前应用最广的处理器版本。

该系列处理器主要包括Cortex-A5、Cortex-A7、Cortex-A8、Cortex-A9、Cortex-A15、Cortex-A17、Cortex-A32、Cortex-A35、Cortex-A53、Cortex-A57、Cortex-A72、Cortex-A73。Cortex-A8只支持单核。其中,Cortex-A5、Cortex-A7、Cortex-A8、Cortex-A9、Cortex-A15、Cortex-A17基于ARMv7-A架构;Cortex-A32、Cortex-A35、Cortex-A53、Cortex-A57、Cortex-A72、Cortex-A73基于ARMv8-A架构,除了Cortex-A32为32位结构,其它支持64位结构。

Cortex-A处理器从高到低可排序为:Cortex-A73、Cortex-A72、Cortex-A57、Cortex-A53、Cortex-A35、Cortex-A32、Cortex-A17、Cortex-A15、Cortex-A7、Cortex-A9、Cortex-A8、Cortex-A5。

CompanyCoreRele-asedRevisionDecodePipeline depthOut-of-order executionBranch predictionbig.LITTLE roleExec. portsFab (in nm)Simult. MTL0 cacheL1 cacheInstr + Data (in KiB)L2 cacheL3 cacheCore configu- rationsDMIPS/ MHzCompanyCoreRele-asedRevisionDecodePipeline depthOut-of-order executionBranch predictionbig.LITTLE roleExec. portsFab (in nm)Simult. MTL0 cacheL1 cacheInstr + Data (in KiB)L2 cacheL3 cacheCore configu- rationsDMIPS/ MHzARM HoldingsCortex-A32 (32-bit)2017ARMv8.0-A (only 32-bit)2-wide8No LITTLE?28NoNo8–64 + 8–640–1 MiBNo1-4+ Cortex-A34 (64-bit)2019ARMv8.0-A (only 64-bit)2-wide8No LITTLE? NoNo8–64 + 8–640–1 MiBNo1-4+ Cortex-A352017ARMv8.0-A2-wide8NoYesLITTLE?28 / 16 / 14 / 10

NoNo8–64 + 8–640 / 128 KiB–1 MiBNo1–4+1.78Cortex-A532014ARMv8.0-A2-wide8NoConditional+ Indirect branch predictionbig/LITTLE228 / 20 / 16 / 14 / 10

NoNo8–64 + 8–64128 KiB–2 MiBNo1–4+2.24Cortex-A552017ARMv8.2-A2-wide8Nobig/LITTLE228 / 20 / 16 / 14 / 10

NoNo16–64 + 16–640–256 KiB/core0–4 MiB1–8+2.65[8]Cortex-A572013ARMv8.0-A3-wide15Yes 3-wide dispatchTwo-levelbig828 / 20 / 16[10] / 14

NoNo48 + 320.5–2 MiBNo1–4+4.6Cortex-A65AE2019ARMv8.2-A??YesTwo-level?2?SMT2No16-64 + 16-6464-256 KiB0-4 MB1–8?Cortex-A722015ARMv8.0-A3-wide15Yes 5-wide dispatchTwo-levelbig828 / 16NoNo48 + 320.5–4 MiBNo1–4+4.72Cortex-A732016ARMv8.0-A2-wide11–12Yes 4-wide dispatchTwo-levelbig728 / 16 / 10NoNo64 + 32/641–8 MiBNo1–4+~6.35Cortex-A752017ARMv8.2-A3-wide11–13Yes 6-wide dispatchTwo-levelbig8?28 / 16 / 10NoNo64 + 64256–512 KiB/core0–4 MiB1–8+?Cortex-A762018ARMv8.2-A4-wide11–13Yes 8-wide dispatchTwo-levelbig810 / 7NoNo64 + 64256–512 KiB/core1–4 MiB1–4?Cortex-A772019ARMv8.2-A4-wide11–13Yes 10-wide dispatchTwo-levelbig127No1.5K entries64 + 64256–512 KiB/core1–4 MiB1-4?Apple Inc.Cyclone2013ARMv8.0-A6-wide16YesYesNo928NoNo64 + 641 MiB4 MiB2?Typhoon2014ARMv8.0‑A6-wide16YesYesNo920NoNo64 + 641 MiB4 MiB2, 3 (A8X)?Twister2015ARMv8.0‑A6-wide16[20]YesYesNo916 / 14NoNo64 + 643 MiB4 MiB No (A9X)2?Hurricane2016ARMv8.1‑A6-wide16YesYes"big" (In A10/A10X paired with "LITTLE" Zephyr cores)916 (A10) 10 (A10X)NoNo64 + 643 MiB(A10) 8 MiB (A10X)4 MiB(A10) No (A10X)2x Hurricane + 2x Zephyr (A10) 3x Hurricane + 3x Zephyr (A10X)?Zephyr2016ARMv8.1‑A3-wide12YesYesLITTLE516 (A10) 10 (A10X)NoNo32 + 321 MiB4 MiB[22] (A10) No (A10X)2x Hurricane + 2x Zephyr (A10) 3x Hurricane + 3x Zephyr (A10X)?Monsoon2017ARMv8.2‑A7-wide16YesYes"big" (In Apple A11 paired with "LITTLE" Mistral cores)1310NoNo64 + 648 MiBNo2x Monsoon + 4× Mistral?Mistral2017ARMv8.2‑A3-wide12YesYesLITTLE510NoNo32 + 321 MiBNo2x Monsoon + 4× Mistral?Vortex2018ARMv8.3‑A7-wide16YesYes"big" (In Apple A12/Apple A12X/Apple A12Z paired with "LITTLE" Tempest cores)137NoNo128 + 1288 MiBNo2x Vortex + 4x Tempest (A12) 4x Vortex + 4x Tempest (A12X/A12Z)?Tempest2018ARMv8.3‑A3-wide12YesYesLITTLE57NoNo32 + 322 MiBNo2x Vortex + 4x Tempest (A12) 4x Vortex + 4x Tempest (A12X/A12Z)?Lightning2019ARMv8.4‑A 7-wide16YesYes"big" (In Apple A13 paired with "LITTLE" Thunder cores)137NoNo128 + 1288 MiBNo2x Lightning + 4x Thunder?Thunder2019ARMv8.4‑A 3-wide12YesYesLITTLE57NoNo32 + 484 MiBNo2x Lightning + 4x Thunder?NvidiaDenver2014ARMv8‑A2-wide hardware decoder, up to 7-wide variable- length VLIW micro-ops13Not if the hardware decoder is in use. Can be provided by dynamic software translation into VLIW.Direct+ Indirect branch predictionNo728NoNo128 + 642 MiBNo2?Denver 22016ARMv8‑A?13Not if the hardware decoder is in use. Can be provided by dynamic software translation into VLIW.Direct+ Indirect branch prediction"Super" Nvidia's own implementation?16NoNo128 + 642 MiBNo2?Carmel2018ARMv8.2‑A? Direct+ Indirect branch prediction ?12NoNo128 + 642 MiB(4 MiB @ 8 cores)2 (+ 8)?CaviumThunderX ARMv8-A2-wide?NoTwo-level ?28NoNo78 + 3216 MiBNo8–16, 24–48?ThunderX2 (ex. Broadcom Vulcan)May 2018ARMv8.1-A 4-wide "4 μops"?YesMulti-level??16SMT4No32 + 32 (data 8-way)256KB per core1MB per core16-32?Applied Micro

Helix????????40 / 28NoNo32 + 32 (per core; write-through w/parity)256 KiB shared per core pair (with ECC)1 MiB/core2, 4, 8?X-Gene ?4-wide15Yes???40NoNo8 MiB84.2X-Gene 2 ?4-wide15Yes???28NoNo8 MiB84.2X-Gene 3 ???????16NoNo??32 MiB32?QualcommKryo2016ARMv8-A??YesTwo-level?"big" or "LITTLE" Qualcomm's own similar implementation?14NoNo32+240.5–1 MiB 2, 46.3Kryo 2XX2017ARMv8-A2-wide11–12Yes 7-wide dispatchTwo-levelbig714 / 11 / 10 [51]NoNo64 + 32/64?512 KiB/Gold CoreNo4?2-wide8NoConditional+ Indirect branch prediction?2NoNo8–64? + 8–64?256 KiB/Silver Core4?Kryo 3XX2018ARMv8.2-A3-wide11–13Yes 8-wide dispatchTwo-levelbig810[51]NoNo64+64[51]256 KiB/Gold Core2 MiB4?2-wide8NoConditional+ Indirect branch prediction?28NoNo16–64? + 16–64?128 KiB/Silver4?Kryo 4XX2019ARMv8.2-A4-wide11–13Yes 8-wide dispatchYesbig811 / 8 / 7NoNo64 + 64512 KiB/Gold Prime 256 KiB/Gold

2 MiB1+3?2-wide8NoConditional+ Indirect branch prediction?2NoNo16–64? + 16–64?128 KiB/Silver4?Falkor11-8-2017"ARMv8.1-A features"; AArch64 only (not 32-bit)4-wide10–15Yes 8-wide dispatchYes?810No24 KiB88[53] + 32500KiB1.25MiB40-48?SamsungM1/M22015ARMv8-A4-wide13Yes 9-wide dispatchTwo-levelbig814 / 10NoNo64 + 322 MiB[59]no4?M32018ARMv8.2-A6-wide15Yes 12-wide dispatchTwo-levelbig1210NoNo64 + 64512 KiB per core4096KB4?M42019ARMv8.2-A6-wide15Yes 12-wide dispatchTwo-levelbig128 / 7NoNo64 + 64512 KiB per core4096KB2?FujitsuA64fx2019ARMv8.2-A4/2-wide7+Yes 5-way?Yesn/a8+7NoNo64 + 648MiB per 12+1 coresNo48+41.9GHz+; 15GF/W+.HiSiliconTaiShan V1102019ARMv8.2-A4-wide?YesYesn/a87NoNo64 + 64512 KiB per core1 MiB per core??

目前国产的CPU以及华为的手机麒麟手机芯片和海思芯片等都是基于ARM V8架构的,也是cortex-A系列。可以说在移动便携式领域设备,ARM几乎全部覆盖。

4 ARM 内核时间表

YearClassic coresCortex coresNeoverse coresARM7ARM8ARM9ARM10ARM11MicrocontrollerReal-timeApplication (32-bit)Application (64-bit)Application (64-bit)1993ARM700 1994ARM710 ARM7DI ARM7TDMI 1995ARM710a 1996 ARM810 1997ARM710T ARM720T ARM740T 1998 ARM9TDMI ARM940T 1999 ARM9E-S ARM966E-S 2000 ARM920T ARM922T ARM946E-SARM1020T 2001ARM7TDMI-S ARM7EJ-S ARM9EJ-S ARM926EJ-SARM1020E ARM1022E 2002 ARM1026EJ-SARM1136J(F)-S 2003 ARM968E-S ARM1156T2(F)-S ARM1176JZ(F)-S 2004 Cortex-M3 2005 ARM11MPCore Cortex-A8 2006 ARM996HS 2007 Cortex-M1 Cortex-A9 2008 2009 Cortex-M0 Cortex-A5 2010 Cortex-M4(F) Cortex-A15 2011 Cortex-R4 Cortex-R5 Cortex-R7Cortex-A7 2012 Cortex-M0+ Cortex-A53 Cortex-A57 2013 Cortex-A12 2014 Cortex-M7(F) Cortex-A17 2015 Cortex-A35 Cortex-A72 2016 Cortex-M23 Cortex-M33(F)Cortex-R8 Cortex-R52Cortex-A32Cortex-A73 2017 Cortex-A55 Cortex-A75 2018 Cortex-M35P(F) Cortex-A65AE Cortex-A76 Cortex-A76AE 2019 Cortex-A77Neoverse E1 Neoverse N1

5 ARM第三方设计公司

Core FamilyInstruction setMicroarchitectureFeatureCache (I / D), MMUTypical MIPS @ MHzStrongARM (Digital)ARMv4SA-1105-stage pipeline16 KB / 16 KB, MMU100–233 MHz 1.0 DMIPS/MHzSA-1100derivative of the SA-11016 KB / 8 KB, MMU Faraday[60] (Faraday Technology)ARMv4FA5106-stage pipelineUp to 32 KB / 32 KB cache, MPU1.26 DMIPS/MHz 100–200 MHzFA526Up to 32 KB / 32 KB cache, MMU1.26 MIPS/MHz 166–300 MHzFA6268-stage pipeline32 KB / 32 KB cache, MMU1.35 DMIPS/MHz 500 MHzARMv5TEFA606TE5-stage pipelineNo cache, no MMU1.22 DMIPS/MHz 200 MHzFA626TE8-stage pipeline32 KB / 32 KB cache, MMU1.43 MIPS/MHz 800 MHzFMP626TE8-stage pipeline, SMP1.43 MIPS/MHz 500 MHzFA726TE13 stage pipeline, dual issue2.4 DMIPS/MHz 1000 MHzXScale (Intel / Marvell)ARMv5TEXScale7-stage pipeline, Thumb, enhanced DSP instructions32 KB / 32 KB, MMU133–400 MHzBulverdeWireless MMX, wireless SpeedStep added32 KB / 32 KB, MMU312–624 MHzMonahans[61]Wireless MMX2 added32 KB / 32 KB L1, optional L2 cache up to 512 KB, MMUUp to 1.25 GHzSheeva (Marvell)ARMv5Feroceon5–8 stage pipeline, single-issue16 KB / 16 KB, MMU600–2000 MHzJolteon5–8 stage pipeline, dual-issue32 KB / 32 KB, MMUPJ1 (Mohawk)5–8 stage pipeline, single-issue, Wireless MMX232 KB / 32 KB, MMU1.46 DMIPS/MHz 1.06 GHzARMv6 / ARMv7-APJ46–9 stage pipeline, dual-issue, Wireless MMX2, SMP32 KB / 32 KB, MMU2.41 DMIPS/MHz 1.6 GHzSnapdragon (Qualcomm)ARMv7-AScorpion[62]1 or 2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv3 FPU / NEON (128-bit wide)256 KB L2 per core2.1 DMIPS/MHz per coreKrait[62]1, 2, or 4 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON (128-bit wide)4 KB / 4 KB L0, 16 KB / 16 KB L1, 512 KB L2 per core3.3 DMIPS/MHz per coreARMv8-AKryo[63]4 cores.?Up to 2.2 GHz (6.3 DMIPS/MHz)

Ax (Apple)ARMv7-ASwift[64]2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEONL1: 32 KB / 32 KB, L2: 1 MB3.5 DMIPS/MHz per coreARMv8-ACyclone[65]2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON / TrustZone / AArch64L1: 64 KB / 64 KB, L2: 1 MB, L3: 4 MB1.3 or 1.4 GHzARMv8-ATyphoon[65][66]2 or 3 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON / TrustZone / AArch64L1: 64 KB / 64 KB, L2: 1 MB or 2 MB, L3: 4 MB1.4 or 1.5 GHzARMv8-ATwister[67]2 cores. ARM / Thumb / Thumb-2 / DSP / SIMD / VFPv4 FPU / NEON / TrustZone / AArch64L1: 64 KB / 64 KB, L2: 2 MB, L3: 4 MB or 0 MB1.85 or 2.26 GHzARMv8.1-AHurricane[68]2 or 3 cores. AArch64, 6-decode, 6-issue, 9-wide, superscalar, out-of-orderL1: 64 KB / 64 KB, L2: 3 MB or 8 MB, L3: 4 MB or 0 MB2.34 or 2.38 GHzARMv8.2-AMonsoon[69]2 cores. AArch64, 7-decode, ?-issue, 11-wide, superscalar, out-of-orderL1I: 128 KB, L1D: 64 KB, L2: 8 MB, L3: 4 MB2.39 GHzARMv8.3-AVortex[70]2 or 4 cores. AArch64, 7-decode, ?-issue, 11-wide, superscalar, out-of-orderL1: 128 KB / 128 KB, L2: 8 MB, L3: 8 MB2.5 GHzARMv8.4-ALightning[71]2 cores. AArch64, 7-decode, ?-issue, 11-wide, superscalar, out-of-orderL1: 128 KB / 128 KB, L2: 8 MB, L3: 16 MB2.66 GHzX-Gene (Applied Micro)ARMv8-AX-Gene64-bit, quad issue, SMP, 64 cores[72]Cache, MMU, virtualization3 GHz (4.2 DMIPS/MHz per core)Denver (Nvidia)ARMv8-ADenver[73][74]2 cores. AArch64, 7-wide superscalar, in-order, dynamic code optimization, 128 MB optimization cache, Denver1: 28nm, Denver2:16nm128 KB I-cache / 64 KB D-cacheUp to 2.5 GHzCarmel (Nvidia)ARMv8(t.b.d.)Carmel[75][76]2 cores. AArch64, 10-wide superscalar, in-order, dynamic code optimization, ? MB optimization cache, functional safety, dual execution, parity & ECC? KB I-cache / ? KB D-cacheUp to ? GHzThunderX (Cavium)ARMv8-AThunderX64-bit, with two models with 8–16 or 24–48 cores (×2 w/two chips)?Up to 2.2 GHzK12 (AMD)ARMv8-AK12[77]???Exynos (Samsung)ARMv8-AM1/M2 ("Mongoose")[78]4 cores. AArch64, 4-wide, quad-issue, superscalar, out-of-order64 KB I-cache / 32 KB D-cache, L2: 16-way shared 2 MB5.1 DMIPS/MHz (2.6 GHz)

ARMv8-AM3 ("Meerkat")[79]4 cores, AArch64, 6-decode, 6-issue, 6-wide. superscalar, out-of-order64 KB I-cache / 32 KB D-cache, L2: 8-way private 512 KB, L3: 16-way shared 4 MB?ARMv8.2-AM4 ("Cheetah")2 cores, AArch64, 6-decode, 6-issue, 6-wide. superscalar, out-of-order64 KB I-cache / 32 KB D-cache, L2: 8-way private 512 KB, L3: 16-way shared 4 MB?

本文参考:https://en.wikipedia.org/wiki/List_of_ARM_microarchitectures

Copyright © 2088 神之降临者-硬核动作游戏门户 All Rights Reserved.
友情链接